If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-136=480
We move all terms to the left:
4x^2-136-(480)=0
We add all the numbers together, and all the variables
4x^2-616=0
a = 4; b = 0; c = -616;
Δ = b2-4ac
Δ = 02-4·4·(-616)
Δ = 9856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9856}=\sqrt{64*154}=\sqrt{64}*\sqrt{154}=8\sqrt{154}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{154}}{2*4}=\frac{0-8\sqrt{154}}{8} =-\frac{8\sqrt{154}}{8} =-\sqrt{154} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{154}}{2*4}=\frac{0+8\sqrt{154}}{8} =\frac{8\sqrt{154}}{8} =\sqrt{154} $
| 4(×-45)=24x | | 0=-8z^2+11z-3 | | 4x^2+16x=480 | | 2x+5/4+5x-6/3=2 | | 2p-2(3p+1)=2 | | 2/5y+3/6=30 | | 5x-14-7x=×+14+× | | 9y=−18 | | -5(3-7)=z+1 | | 3(2x+1)(4x+1=0 | | 4x+7=32-7x | | -3(3y-13)+5y=27 | | 4x+7=37-7x | | 3(3y-18)+5y=16 | | 〖2x〗^2-14x=0 | | 0.5x-14=-8 | | 8p+4p=2p | | 7x+4x=3x | | P=200-5q | | 1/x=1.05 | | 3x19x+28=0 | | 2x+17=9x-1 | | (x+13)^2-(25)=0 | | -279^2+x^2=0 | | 0=279^2-x^2 | | Z=y-(3) | | 0^2=279^2-x^2 | | k(k−9)−4(k−9)=k | | (x+3)(x+4)=342 | | 6a-7÷3a+2=5/3 | | -38=-2(43d-2) | | 7-3(x-2)=1 |